Evidence of high expression of peptidylglycine alpha-amidating monooxygenase in the rat uterus: estrogen regulation.

نویسندگان

  • R El Meskini
  • C Delfino
  • F Boudouresque
  • C Oliver
  • P M Martin
  • Ouafik L'H
چکیده

In the present study, high levels of peptidylglycine alpha-amidating monooxygenase (PAM), which catalyzes the two-step formation of bioactive alpha-amidated peptides from their glycine-extended precursors, have been found in the uterus. Expression of PAM was evaluated in the uterus of intact cycling adult female rats and after experimental manipulation of the estrogen status of the rats. During the estrous cycle, PAM mRNA levels exhibited striking changes inversely related to the physiological variations of plasma estrogen levels. The levels of PAM transcripts changed markedly during the estrous cycle, reaching the highest levels at metestrus. There was a 15-fold increase in the abundance of PAM mRNA between metestrus and proestrus. Chronic treatment of ovariectomized rats with 17beta-estradiol decreased PAM mRNA levels to values comparable with those found in intact rats at proestrus. Progesterone was without effect on PAM mRNA levels, indicating that the effect was specific for estradiol. In situ hybridization studies were conducted to determine the tissue disposition and cell types expressing PAM. High levels of PAM mRNA were localized in the endometrium at the level of luminal and glandular cells. A weak signal was observed in stromal cells, and the myometrium cells were negative. 17beta-Estradiol treatment induced an overall decrease of the hybridization signal, as compared with ovariectomized rats. These results demonstrate the presence of high levels of PAM in the uterus and indicate that estrogens are involved in regulating the expression of the enzyme in this tissue. However, the present study provides no information regarding whether this regulation takes place at the level of transcription or influences mRNA stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prevalence and turnover of peptidylglycine alpha-amidating monooxygenase mRNA in atrial cardiomyocytes.

Peptidylglycine alpha-amidating monooxygenase (PAM), the enzyme responsible for the alpha-amidation of neuroendocrine peptides, is more prevalent in the atrium of the heart than in pituitary or brain. RNase protection assays indicate that PAM transcripts account for approximately 0.5% of the mRNA in the neonatal atrium and 0.06% of the mRNA in the neonatal ventricle. In primary atrial cardiomyo...

متن کامل

Intermittent hypoxia activates peptidylglycine alpha-amidating monooxygenase in rat brain stem via reactive oxygen species-mediated proteolytic processing.

Intermittent hypoxia (IH) associated with sleep apneas leads to cardiorespiratory abnormalities that may involve altered neuropeptide signaling. The effects of IH on neuropeptide synthesis have not been investigated. Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the alpha-amidation of neuropeptides, which confers biological activity to a large number of neuropeptid...

متن کامل

The multifunctional peptidylglycine alpha-amidating monooxygenase gene: exon/intron organization of catalytic, processing, and routing domains.

Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) is a multifunctional protein containing two enzymes that act sequentially to catalyze the alpha-amidation of neuroendocrine peptides. Peptidylglycine alpha-hydroxylating monooxygenase (PHM) catalyzes the first step of the reaction and is dependent on copper, ascorbate, and molecular oxygen. Peptidyl-alpha-hydroxyglycine alpha-ami...

متن کامل

Alternative splicing governs sulfation of tyrosine or oligosaccharide on peptidylglycine alpha-amidating monooxygenase.

Peptidylglycine alpha-amidating monooxygenase (PAM) catalyzes the COOH-terminal alpha-amidation of neuro-endocrine peptides through the sequential action of monooxygenase and lyase domains contained within this bifunctional protein. Alternative splicing leads to the expression of soluble and integral membrane bifunctional PAM proteins as well as a soluble monofunctional monooxygenase. In order ...

متن کامل

Peptidyl-glycine alpha-amidating monooxygenase targeting and shaping of atrial secretory vesicles: inhibition by mutated N-terminal ProANP and PBA.

ANP (atrial natriuretic peptide) is widely recognized as an important vasorelaxant, diuretic, and cardioprotective hormone. Little is known, however, about how ANP-secretory vesicles form within the atrial myocytes. Secretory vesicles were visualized by fluorescence microscope imaging in live rat atrial myocytes expressing proANP-enhanced green fluorescent protein (EGFP), or N-terminal-mutated ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 12  شماره 

صفحات  -

تاریخ انتشار 1998